Points defining triangles with distinct circumradii

Leonardo Martínez Edgardo Roldán-Pensado

Unidad Juriquilla, Instituto de Matemáticas, UNAM

March 26, 2014

Five points

(E. Klein) Among any 5 points in general position on the plane, there are always 4 of them in convex position.

Happy Ending Theorem

Theorem

For every positive integer k there exists a number n_k such that if we take n_k or more points on the plane in general position, then we can find k of them in convex position.

Known bounds:

$$1+2^{k-2} \leq n_k \leq \binom{2k-5}{k-2} = \mathcal{O}\left(\frac{4^k}{\sqrt{k}}\right).$$

 $\mathsf{Convex} \text{ position} \to \mathsf{Distinct} \text{ circumradii}$

Question on distinct circumradii

In Austral. Math. Soc. Gaz. 1975, Erdős asks:

Problem

Let k be a positive integer. Is it true that there always exists an integer n_k such that in every set of n_k points on the plane in general position (no 3 on a line or 4 on a circle) we can find a set of k of them such that all the triangles they define have distinct circumradii?

Three years later he claims to have an affirmative answer for $n_k = 2\binom{k-1}{2}\binom{k-1}{3} + k$. But he inadvertently left out a non-trivial case.

- ► Take n points on the plane and G a maximal good set. Suppose |G| = ℓ. Let r₁, ..., r_(ℓ) be the distinct circumradii.
- ► (*) Any other point lies in a circle of radius r_i that goes through two of the points of G.
- Therefore, by the general position hypothesis $n \ell \leq 2\binom{\ell}{2}\binom{\ell}{3}$.

Erdős argument

The theorems

Theorem (L.M. and E. Roldán, 2014)

- ▶ n₄ ≤ 9
- ▶ *n*₅ ≤ 37

Theorem

(L.M. and E. Roldán 2014) There exists a number $n_k = O(k^9)$ such that for every n_k points in general position we can find k of them with distinct circumradii.

New idea

- ▶ For $\{A, B\}$ y $\{C, D\}$ distinct pairs of points, we consider the set of points X such that R(ABX) = R(CDX). We call it C(AB, CD).
- C(AB, CD) is an algebraic curve of degree at most 6.

Sketch of the proof

- We bound n_4 and n_5 .
- We prove a O(n⁵) for when all the points lie on an algebraic curve.
 - Maximal set
 - Bezout's theorem $+ (n_4) + (n_5)$
- We prove the main theorem.
 - Maximal set
 - $\mathcal{O}(n^5)$ result for algebraic curves

References

- Julian L. Coolidge, *A treatise on algebraic plane curves*, Clarendon Press, 1931.
- Paul Erdős and George Szekeres, *A combinatorial problem in geometry*, Compositio Math. **2** (1935), 463–470.
- Paul Erdős, Some problems on elementary geometry, Austral. Math. Soc. Gaz. 2 (1975), 2–3.
- - Paul Erdős, *Some more problems on elementary geometry*, Austral. Math. Soc. Gaz. **5** (1978), no. 371, 52–54.
 - L. Martínez and E. Roldán-Pensado, Points defining triangles with distinct circumradii, ArXiv e-prints, 1402.6276, (2014) To be published in Acta Mathematica Hungarica