### A Hall-type theorem for points in general position

A. Holmsen, L.I. Martínez Sandoval, L. Montejano

Ben-Gurion University of the Negev A New Era of Discrete & Computational Geometry 30 Years Later

Tuesday, June 21, 2016

### Hall's theorem

Let  $F = \{S_1, \ldots, S_m\}$  be a family of finite subsets of a common ground set E. A system of distinct representatives is an m-element subset  $\{x_1, x_2, \ldots, x_m\}$  of E such that  $x_i \in S_i$  for all  $1 \le i \le m$ .

### Hall's theorem

Let  $F = \{S_1, \ldots, S_m\}$  be a family of finite subsets of a common ground set E. A system of distinct representatives is an m-element subset  $\{x_1, x_2, \ldots, x_m\}$  of E such that  $x_i \in S_i$  for all  $1 \le i \le m$ .

#### Theorem (Hall's theorem, 1935)

The family F has a system of distinct representatives if and only if for every subset  $I \subset \{1, 2, ..., m\}$  we have

$$\left|\bigcup_{i\in I}S_i\right|\geq |I|.$$

## Hall-type theorems

Let  $F = \{S_1, \ldots, S_m\}$  be a family of subsets on a common ground set E. A system of \_\_\_\_\_ representatives is an m-element subset  $\{x_1, x_2, \ldots, x_m\}$  of E with the property \_\_\_\_\_ such that  $x_i \in S_i$  for all  $1 \le i \le m$ .

## Hall-type theorems

Let  $F = \{S_1, \ldots, S_m\}$  be a family of subsets on a common ground set E. A system of \_\_\_\_\_ representatives is an m-element subset  $\{x_1, x_2, \ldots, x_m\}$  of E with the property \_\_\_\_\_ such that  $x_i \in S_i$  for all  $1 \le i \le m$ .

### Theorem (Hall-type theorem)

The family F has a system of \_\_\_\_\_ representatives if (and only if) for every subset  $I \subset \{1, 2, ..., m\}$  we have

$$\alpha\left(\bigcup_{i\in I}S_i\right)\geq f(|I|).$$

Here  $\alpha$  is an integer valued function related to the conclusion we want to obtain.

## Hall-type theorem for hypergraphs

Let  $F = \{H_1, \ldots, H_m\}$  be a family of hypergraphs on a common vertex set V. A system of disjoint representatives is an *m*-element subset  $\{E_1, E_2, \ldots, E_m\}$  of pariwise disjoint edges such that  $E_i \in H_i$  for all  $1 \le i \le m$ .

## Hall-type theorem for hypergraphs

Let  $F = \{H_1, \ldots, H_m\}$  be a family of hypergraphs on a common vertex set V. A system of disjoint representatives is an *m*-element subset  $\{E_1, E_2, \ldots, E_m\}$  of pariwise disjoint edges such that  $E_i \in H_i$  for all  $1 \le i \le m$ .

### Theorem (Aharoni-Haxel, 2000)

The family F has a system of disjoint representatives if for every subset  $I \subset \{1, 2, ..., m\}$  there exists a matching  $M_I$  in  $\bigcup_{i \in I} H_i$  which needs at least |I| disjoint edges from  $\bigcup_{i \in I} H_i$  to be pinned.

## Hall-type theorem for hypergraphs

Let  $F = \{H_1, \ldots, H_m\}$  be a family of hypergraphs on a common vertex set V. A system of disjoint representatives is an m-element subset  $\{E_1, E_2, \ldots, E_m\}$  of pariwise disjoint edges such that  $E_i \in H_i$  for all  $1 \le i \le m$ .

### Theorem (Aharoni-Haxel, 2000)

The family F has a system of disjoint representatives if for every subset  $I \subset \{1, 2, ..., m\}$  there exists a matching  $M_I$  in  $\bigcup_{i \in I} H_i$  which needs at least |I| disjoint edges from  $\bigcup_{i \in I} H_i$  to be pinned. The proof introduced topological techniques to the area.

Three definitions

Three definitions

A set X of points in ℝ<sup>d</sup> is in general position if every subset of at most d + 1 points is affinely independent.

Three definitions

- A set X of points in  $\mathbb{R}^d$  is in general position if every subset of at most d + 1 points is affinely independent.
- For a set X of points in R<sup>d</sup> let φ(X) denote the maximal size of a subset of X in general position.

Three definitions

- A set X of points in ℝ<sup>d</sup> is in general position if every subset of at most d + 1 points is affinely independent.
- For a set X of points in ℝ<sup>d</sup> let φ(X) denote the maximal size of a subset of X in general position.
- Let F = {X<sub>1</sub>,...,X<sub>m</sub>} be a family of finite sets in ℝ<sup>d</sup>. A system of general position representatives is a m-element subset {x<sub>1</sub>, x<sub>2</sub>,...,x<sub>m</sub>} in general position such that x<sub>i</sub> ∈ X<sub>i</sub> for all 1 ≤ i ≤ m.

Example



## Hall-type theorem for general position

Theorem (A. Holmsen, L.M-S., L. Montejano, 2015) For every integer  $d \ge 1$  there exists a function  $f_d : \mathbb{N} \to \mathbb{N}$  with  $f_d(k)$  in  $O(k^d)$  such that the following holds. Let  $F = \{X_1, \ldots, X_m\}$  be a family of finite sets in  $\mathbb{R}^d$ . If

$$\varphi\left(\bigcup_{i\in I}X_i\right)\geq f_d(|I|)$$

for every non-empty subset  $I \subset \{1, 2, ..., m\}$ , then F has a system of general position representatives.

We study a simplicial complex  $\boldsymbol{K}$ 

We study a simplicial complex K

Vertices of K:  $\cup F$ Faces of K: Sets in general position

We study a simplicial complex K

Vertices of K:  $\cup F$ Faces of K: Sets in general position

We call K the general position complex.

We study a simplicial complex K

Vertices of K:  $\cup F$ Faces of K: Sets in general position

We call K the general position complex.

 $\bigcup_{i \in I} X_i \longrightarrow \text{Induced sub complex of } K$ System of g.p.r.  $\leftarrow$  Colorful simplex

A theorem by Kalai and Meshulam (2005) gives a Hall-type criterion to find colorful simplices in terms of connectivity.

- A theorem by Kalai and Meshulam (2005) gives a Hall-type criterion to find colorful simplices in terms of connectivity.
- K can be regarded as a completion of the affine independence complex L. This allows us to understand K locally.
- In particular, we can understand the connectivity of K by verifying a local condition on L. The following lemma can be deduced from Björner's version of the Nerve Theorem (2003).

- A theorem by Kalai and Meshulam (2005) gives a Hall-type criterion to find colorful simplices in terms of connectivity.
- K can be regarded as a completion of the affine independence complex L. This allows us to understand K locally.
- In particular, we can understand the connectivity of K by verifying a local condition on L. The following lemma can be deduced from Björner's version of the Nerve Theorem (2003).

### Lemma (A. Holmsen, L.M-S., L. Montejano)

Let L be a simplicial complex of dimension d and let k be a non-negative integer. If L is (2k + 2)-star, then its d-completion  $\Delta_d(K)$  is k-connected.

Therefore, for any *I* ⊂ {1, 2, ..., *m*} and *k* = |*I*| − 2, if *L<sub>I</sub>* is the subcomplex of *L* induced by ∪<sub>*i*∈*I*</sub>*X<sub>i</sub>* we have:

Hypothesis  $\rightarrow L_I$  is (2k+2)-star  $\rightarrow \Delta_d(L_I)$  is k-connected

Therefore, for any I ⊂ {1, 2, ..., m} and k = |I| - 2, if L<sub>I</sub> is the subcomplex of L induced by ∪<sub>i∈I</sub>X<sub>i</sub> we have:

Hypothesis  $\rightarrow L_I$  is (2k+2)-star  $\rightarrow \Delta_d(L_I)$  is k-connected

 This, combined with Kalai and Meshulam result, implies the desired conclusion.

Therefore, for any I ⊂ {1, 2, ..., m} and k = |I| − 2, if L<sub>I</sub> is the subcomplex of L induced by ∪<sub>i∈I</sub>X<sub>i</sub> we have:

Hypothesis  $\rightarrow L_I$  is (2k+2)-star  $\rightarrow \Delta_d(L_I)$  is k-connected

 This, combined with Kalai and Meshulam result, implies the desired conclusion.

**Remark:** Using an easier pidgeon-hole argument we can get a function  $f_d(k)$  in  $O(k^{d+1})$ . The topological technique allows us to get a function in  $O(k^d)$ .

Therefore, for any I ⊂ {1, 2, ..., m} and k = |I| − 2, if L<sub>I</sub> is the subcomplex of L induced by ∪<sub>i∈I</sub>X<sub>i</sub> we have:

Hypothesis  $\rightarrow L_I$  is (2k+2)-star  $\rightarrow \Delta_d(L_I)$  is k-connected

 This, combined with Kalai and Meshulam result, implies the desired conclusion.

**Remark:** Using an easier pidgeon-hole argument we can get a function  $f_d(k)$  in  $O(k^{d+1})$ . The topological technique allows us to get a function in  $O(k^d)$ . In some sense this is asymptotically correct.

### A lower bound

For k and d positive integers we define

$$C_d(k) = egin{cases} k & ext{if } k \leq d+1 \ \binom{k-1}{d} & ext{if } k \geq d+2. \end{cases}$$

#### Proposition

Let d be a positive integer. Let m be an integer  $m \ge d + 2$ . There exists an example of a family  $F = \{X_1, \ldots, X_m\}$  of finite sets in  $\mathbb{R}^d$  without a system of general position representatives and for which

$$\varphi\left(\bigcup_{i\in I}X_i\right)\geq C_d(|I|)$$

for every non-empty subset  $I \subseteq \{1, 2, \dots, m\}$ .

#### Computation

How can we compute a system of general position representatives? What can we say about the efficiency of the algorithm?

#### Computation

How can we compute a system of general position representatives? What can we say about the efficiency of the algorithm?

#### **Fast verification**

There exist fast probabilistic algorithms to determine whether a bipartite graph has a matching. Do they also exist for systems of general position representatives?

### Computation

How can we compute a system of general position representatives? What can we say about the efficiency of the algorithm?

#### **Fast verification**

There exist fast probabilistic algorithms to determine whether a bipartite graph has a matching. Do they also exist for systems of general position representatives?

### Increasing $\varphi$ in first values

Does φ(U<sub>I</sub>) ≥ 30|I| gives a system of general position representatives?

### Computation

How can we compute a system of general position representatives? What can we say about the efficiency of the algorithm?

#### **Fast verification**

There exist fast probabilistic algorithms to determine whether a bipartite graph has a matching. Do they also exist for systems of general position representatives?

### Increasing $\varphi$ in first values

Does φ(U<sub>I</sub>) ≥ 30|I| gives a system of general position representatives?

#### Further work

Which other geometric properties have a Hall-type theorem?

## Thank you!

#### Thank you for your attention!