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Introduction



Depth

Question
Let F be a family of geometric objects and p a point. How “deep”
is p with respect to F?

Applications in:

I Communications

I Statistics (detecting outliers)

I Motion planning

I Helly and Eckhoff type theorems
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Example

Figure: What is depth in R?

I Points near the middle have greater depth, and depth
decreases to 0 as we get far away.

I There is always a point with depth at least n
2 , the median.
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Tukey’s depth

Definition (Tukey’s depth, 1974)

Given a finite set of points S in Rd , the Tukey depth of a point p
with respect to S is defined as the minimum value of |S ∩ H| as H
varies over the halfspaces H that contain p. We denote this value
by tdepS(p).



Example Tukey’s depth

Figure: Example of Tukey’s depth on the plane for 13 points



Depth with respect to a family of convex sets

Definition (-, RT, 2016)

Given a family of convex bodies F in Rd , the family depth of a
point p with respect to F is defined as the minimum value of

IH := |{F : F ∈ F , F ∩ H 6= ∅}|

as H varies over the halfspaces H that contain p. We denote this
value by depF (p).



Example of family depth

Figure: Example of family depth on the plane. What is the depth?



Example of family depth

Figure: Depth is 2, 3, 1 from left to right



Basic properties & center regions



Good depth function

What should a “good depth function” satisfy?

R. Liu (1990) and Y. Zuo, R. Serfling (2000):

I Affine invariance

I Maximality at the center For symmetric distributions

I Monotonicity Depth decreases away from a deepest point

I Vanishing at infinity

Theorem (-,RT, 2016)

The function depF satisfies these four properties
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Affine invariance

A depth function is affine invariant if for any affine transformation
T we have depF (p) = depTF (Tp).

Figure: depF is invariant under an affine transformation T
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Maximality at center for symmetric families

A family F is symmetric with center p if for every F in F , the
symmetric set with respect to p is also in F .

Figure: Maximality at the center
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Monotonicity from the maximum

A depth function is monotonic from the maximum if depF (x)
decreases as x gets away from a point y that maximizes depF .

Figure: Monotonicity from the maximum
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Vanishing at infinity

A depth function is vanishing at infinity if lim||x ||→∞ depF (x) = 0.

Figure: depF is vanishing at infinity



Vanishing at infinity

A depth function is vanishing at infinity if lim||x ||→∞ depF (x) = 0.

Figure: depF is vanishing at infinity



Connection to Tukey’s depth

Both tdep and dep are good depth functions. How are they
related?

Proposition

I Let S be a set of points in Rd and S be the family of
singletons given by S . Then for any point p we have

depS(p) = tdepS(p).

I Let F = {F1, . . . ,Fn} be a family of convex sets in Rd . Then
for any point p we have

depF (p) ≥ sup
S: ∀i |S∩Fi |=1

tdepS(p).

I In some cases the inequality above is strict
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Example

Figure: Example that shows that depF (p) does not only depend on the
Tukey depth of p with respect to representative sets of the family F



Center regions

The r -center Cr (F) is the set of points of depth at least r with
respect to F .

Figure: Example of center regions for family depth on the plane
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Nice properties of center regions

The corresponding definition for Tukey’s depth has been widely
studied and is well behaved. For example:

1. The r -center is always convex.

2. The r -center is a polytope.

3. Each facet of the r -center lies in a hyperplane spanned by at
most d points of S .

4. The halfspace opposite to the r -center with respect to one of
such hyperplanes contains exactly r − 1 points.

The r -center for depF might fail to be a polytope, but it is always
convex. It is an intersection of planks.
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Rotating planks

Lemma (The planks lemma)

Let n be a positive integer and r a real number in the interval
[0, n]. Let F be a family of n convex sets of Rd . Then for each
direction u there exists a closed plank Pu perpendicular to it such
that:

I For each hyperplane in the plank, each of the halfspaces it
defines intersects at least r of the sets of F .

I For each of the two bounding hyperplanes of the plank, the
halfspace defined by it that contains the plank, contains
more than n − r sets of F .

Furthermore, Cr (F) =
⋂

u∈Sd−1 Pu.



Proof of planks lemma

Figure: Example of projection of 6 convex sets to the x-axis. The image
shows the functions f − and f + for depth 2 overlapped on the family F .



Centerpoint Theorem & Helly’s Theorem



Centerpoint theorem

Theorem (Rado’s centerpoint theorem, 1946)

For any finite set of points S in Rd we can always find a point of
Tukey depth at least |S |

d+1 .

Figure: Centerpoint theorem for a set of 13 points
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Intersection pattern

I Do we have a centerpoint theorem for depF?

Yes, at least we
have CPT.

I Can we do better? Yes, by looking at the intersection pattern
of F .

Let’s consider an extreme case.
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Helly’s theorem

Theorem (Helly’s theorem, 1923)

Let F be a family of convex bodies in Rd . If any subfamily of F
with at most d + 1 sets is intersecting, then the whole family F is
intersecting.

Or, in other words, if a family of convex sets is non-intersecting,
then we can find a subfamily of size at most d + 1 that is
non-intersecting.
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Helly’s theorem

Figure: A family of non-intersecting convex sets



Helly’s theorem

Figure: Three sets that detect that the family is non-intersecting



Main question

A family of convex bodies F is said to be k-intersecting if every
subfamily of size k or less has non-empty intersection.

Problem
What is the largest value αd ,k so that any k-intersecting family
convex bodies in Rd has a point of depth at least αd ,k |F|?

I αd ,0 = 1
d+1 by Rado’s centerpoint theorem

I αd ,d+1 = 1 by Helly’s theorem

I In between, αd ,k interpolates between these two theorems
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Naive approach

We can take one point from each of the m =
(n
k

)
intersections. We

get a set S of m points. We apply the centerpoint theorem to S .

Figure: Pairwise intersecting sets
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Naive approach

Figure: We take a point in each of the pairwise intersections to create S



Naive approach

Figure: We consider a centerpoint p of S



Naive approach

Let H be a halfspace that contains p and intersects the minimum
number of sets from F , say j of them.

jk

k!
≈
(
j

k

)
≥ |H ∩ S | ≥ |S |

d + 1
=

1

d + 1

(
n

k

)
≈ 1

d + 1
· n

k

k!

So

j

n
'

1
k
√
d + 1

And thus αd ,k ' 1
k√d+1

. We can do better.
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Getting better than naive

Proposition

Let F be a family of 2-intersecting sets on the plane. Then there
is a point such that any halfspace that contains it intersects at
least 2

3 |F| of the sets.

We use the planks lemma & Helly’s theorem. Explain on
whiteboard.
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The planks lemma

Lemma
Let n be a positive integer and r a real number in the interval
[0, n]. Let F be a family of n convex sets of Rd . Then for each
direction u there exists a closed plank Pu perpendicular to it such
that:

I For each hyperplane in the plank, each of the halfspaces it
defines intersects at least r of the sets of F .

I For each of the two bounding hyperplanes of the plank, the
halfspace defined by it that contains the plank, contains more
than n − r sets of F .

Furthermore, Cr (F) =
⋂

u∈Sd−1 Pu(F).



Specific case of planks lemma

Lemma
Let n be a positive integer. Let F be a family of n convex sets on
the plane. Then for each direction u there exists a closed plank Pu

perpendicular to it such that:

I For each line in the plank, each of the halfplanes it defines
intersects at least 2

3n of the sets of F .

I For each of the two bounding lines of the plank, the line
defined by it that contains the plank, contains more than n

3
sets of F .

Furthermore, C 2
3
n(F) =

⋂
u∈S1 Pu(F).



The main theorem



A purely combinatorial hitting set problem

Definition
Let m be a positive integer and k an integer in [m]. We define
βm,k as the smallest real number β for which the following holds.
For any finite set X and any m of its subsets A1, . . . ,Am with
|Ai | > β · |X | (i = 1, 2, . . . ,m) there exists a hitting set of size at
most k .

Intuitively, if we fix m and k , then any collection of m sufficiently
large subsets of any set X can be hit with k elements.
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Understanding βm, k

Figure: Any finite set X . Suppose that for any family of 4 subsets we can
find a hitting set of size 2. How large they have to be to always be able
to do this?



Understanding βm, k

Figure: If they are proportionally small with respect to |X |, we can fit
them and make them “very disjoint” and hard to hit.



Understanding βm, k

Figure: If they are proportionally large with respect to |X |, they start to
overlap and they are easier to hit with few elements.



Main theorem: A curious connection

Theorem (-,RT, 2016)

For any positive integer d and an integer k in [d + 1] we have:

αd ,k + βd+1,k = 1.



Sketch of the proof

Figure: Sketch of the proof of Main Theorem



Sketch of the proof

Proof (One side, by contradiction).

No depth (1− βd+1,k)|F| & Planks lemma & Helly’s theorem

↓
Halfspaces H1, . . . ,Hd+1 containing more than βd+1,k |F| each

↓
A1, . . . ,Ad+1 subsets of F containing more than βd+1,k |F| each

↓
Hitting set of size k for A1, . . . ,Ad+1

↓
k convex sets of the family F1, . . . ,Fk & k-intersection hypothesis

↓
Point p in ∩Fi⊆ ∩Hi . Contradiction!
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Consequences

Corollary (CPT applied to a combnatorial hitting set)

The value of βm,k is in 1− Ω
(

1
k√m

)

Corollary (Exact “almost Helly”)

For any positive integer d βd ,d+1 = 1
d+1 and thus αd ,d = d

d+1 .

Proof.
Among d + 1 subsets of |X | with more than 1

d+1 |X | elements
each, two must intersect. Create the hitting set with a common
point and one point from each of the remaining sets.
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Consequences

Corollary (Exactly in between Helly and Rado)

For any k , β2k,k ≤ 1− 1
k√15

and thus α2k−1,k ≥ 1
k√15

.

Proof (Probabilistic method with blemishes).

We need to hit 2k subsets of X using k elements. We sample
randomly 0.63k elements of X .

P(Sample ∩ Ai 6= ∅) ≥ 1−
(

1
k
√

15

)0.63k

E(# of Ai ’s hit) ≥ 2k

(
1−

(
1

k
√

15

)0.63k
)
> 1.63k .
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Connections to transversal theorems



Transversals

A transversal line (plane, hyperplane, etc) for a family F of sets is
a line that intersects each set of the family.

Figure: Transversal line
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Looking for transversal lines

Question (Classic)

Is there a Helly-type theorem for transversal line on the plane? Is
there value of k for which the following happens?

If every k sets of a family of convex sets have a transversal line,
then the whole family has a transversal line.

No. But there are trade-offs.
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Transversal theorems

Theorem (Hadwiger, 1957 and subsequent work)

Let F be a family of convex sets in Rd . If we can “order” the sets
of F and for each d + 1 sets give a transversal consistent with the
ordering, then F has a transversal hyperplane.

Theorem (Katchalski, Liu, 1980)

Let F be a family of convex sets in R2 and k ≥ 3. If each k sets of
F sets have a transversal line, then there is a line through at least
γk |F| sets of F .
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A new transversal theorem

We change the line hypothesis for a k-intersection hypothesis.
This of course guarantees a transversal hyperplane.

But there is an
interesting trade-off result.

Proposition

Let d be a positive integer and k an integer in {2, . . . , d + 1}. Let
F be a k-intersecting finite family of convex sets in Rd . Then
there exists a point such that any hyperplane through it is
transversal to at least αd ,k |F| sets of F .
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Holmsen’s tight triple theorem

A tight triple consists of three convex sets A, B, C for which

conv(A ∪ B) ∩ conv(B ∪ C ) ∩ conv(C ∪ A) 6= ∅.

Remark: Three convex sets with transversal line are a tight triple.

Theorem (Holmsen, 2013)

Let F be a finite family of convex sets for which any of its triples
is tight. Then there is a transversal line to at least 1

8 |F| sets of F .
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Using family depth to give a simpler proof

Proposition

If any triple of a family F of convex sets is tight, then there is a
point with family depth at least 1

2 |F|.

Figure: The plank lemma once more!
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Alternative proof

Proof.
Let p be a point of depth at least 1

2 |F|. For each set A consider
the minimal double cone CA with apex p that contains it.
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Open problems

1. Study the algorithmic aspects of finding family depth
centerpoints or centerpoint regions for, say, a family of n
polygons with m edges in total.

2. Give a detailed probabilistic analysis that finds the correct
asymptotic value of αd ,k
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Thank you for your attention!
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