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Some ideas in graph theory

Let G be a graph and label its edges.

We are interested the number of spanning trees τ(G ), of acyclic
orientations α(G ) and of totally cyclic orientations α∗(G ).
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Spanning trees

Connected an acyclic subgraphs of G whose edges cover all the
vertices.

We use given labels to denote the trees. In the picture we see the
spanning tree {3, 5, 6, 7}. Other examples: {2, 5, 7, 8} and
{1, 4, 5, 8}. There are 27 in total i.e. τ(G ) = 27.
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Spanning trees

The set T of spanning trees satisfies:

1. T 6= ∅
2. If A and B are elements in T and we take an element

a ∈ A \B, then we can find b ∈ B \A such that A \ {a} ∪ {b}
is in T .
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The value of α(G ) is 42.
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Merino-Welsh conjectures

Note that in the example above

max(α, α∗) = max{42, 42} ≥ 27 = τ.

In 1999, Criel Merino and Dominic Welsh noted that α ≥ τ for
some families of graphs, and when this was not the case, α∗ ≥ τ .
From here they conjectured:

Conjecture

For every 2-connected and loopless graph G

max (α(G ), α∗(G )) ≥ τ(G ).
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Merino-Welsh conjectures

Later on (2009), Conde and Welsh propose stronger but easier to
handle versions of the conjecture:

Conjecture

For any 2-connected and loopless graph we have:

1. (Additive) α(G ) + α∗(G ) ≥ 2 · τ(G ).

2. (Multiplicative) α(G ) · α∗(G ) ≥ τ(G )2.

max (α, α∗) ≥ α + α∗

2
≥
√
α · α∗.
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Partial results

The conjecture is still open, but there has been constant progress
towards its solution

I 1999 - Merino, Welsh - The conjecture is posed and solved for
some families of graphs

I 2009 - Conde, Merino - Threshold graphs, bipartite graphs,
9, 945, 269 cases verified by computer

I 2010 - Thomassen - G with at least 4n edges or at most 16n
15

edges, multigraphs with maximum degree 3 and planar
triangulations

I 2011 - Chávez-Lomeĺı, Merino, Noble, Raḿırez-Ibáñez -
Wheels, whirls, 3-regular graphs with girth at least 5,
complete graphs

I 2014 - Noble, Royle - Series parallel graphs
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Lattice paths

The set B of valid lattice paths satisfies the following:

1. B 6= ∅.
2. If A and B are in B and we take an element a ∈ A\B, then we

can find an element b ∈ B \A such that A \ {a} ∪ {b} is in B.

These are the same properties satisfied by the spanning trees of a
graph.
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A matroid is a structure formed by a ground set E and a set
B ⊆ P(E ) of bases, for which 1. and 2. hold

We have seen two ways of constructing matroids

I From the spanning trees of a graph: graphic matroids.

I From valid lattice paths in a board: lattice path matroids
(LPMs) (2013 - Bonin, de Mier, Noy).
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Another way to construct matroids

I We take a vector space V over the field F.

I We fix a set of vectors S = {v1, v2, . . . , vj}.
I We set as ground set [j ] and I ⊆ [j ] is a base if {vi : i ∈ I} is

a vector base for span(S).

These matroids are called representable over F. If F is GF (2), we
simply say that the matroid is binary .
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Independent sets

I Any subset of a base set is called an independent set.

I For a subset A a subset of E we define r(A) (the rank of A)
as the size of the largest independent set contained in A.

I A powerful invariant for matroids is the Tutte polynomial . It
is a two variable polynomial in x and y defined as follows:

T (M; x , y) =
∑
A⊂E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A).
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Tutte polynomial

For LPMs, T (M; 1, 1) = number of valid lattice paths

For graphic matroids:

I T (M; 1, 1) = # of spanning trees

I T (M; 2, 0) = # of acyclic orientations

I T (M; 0, 2) = # of totally cyclic orientations

The Tutte polynomial can be obtained recursively from contraction
and deletion operations.
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Merino-Welsh conjectures

Conjecture (Merino-Welsh conjectures: matroid versions)

Let M be a matroid without loops or coloops and TM its Tutte
polynomial. Then:

1. max (TM(2, 0),TM(0, 2)) ≥ TM(1, 1).

2. (Additive) TM(2, 0) + TM(0, 2) ≥ 2 · TM(1, 1).

3. (Multiplicative) TM(2, 0) · TM(0, 2) ≥ TM(1, 1)2.



Partial results

I Graphic matroids corresponding to the previously mentioned
families of graphs

I 2011 - Chávez-Lomeĺı, Merino, Noble, Raḿırez-Ibáñez -
Catalan matroids and paving matroids

I 2015 - Knauer, M-S, Raḿırez-Alfonśın - LPMs + sharpened
version and equality cases
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Results: Characterization of snakes

Not every LPM is graphic.

Which are?

Theorem (Characterization of snakes)

Given a connected LPM M the following statements are equivalent:

I M is a snake

I M is graphic

I M is a graphic matroid of a generalized fan

I M is binary
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Results: Explicit formulas for snakes

Let Fib(n) be the set of all n-digit binary sequences
b = (b1, . . . , bn) without adjacent ones.

Proposition

The number of valid lattice paths for the snake S(a1, a2, . . . , an) is

∑
b∈Fib(n+1)

n∏
i=1

(ai − 1)1−|bi+1−bi |.

Proposition

The value of α · α∗ for the snake S(a1, a2, . . . , an) is

4 ·
n∏

i=1

(2ai − 1).
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Results: Merino-Welsh conjecture for LPMs

Theorem
Let M be a loopless and coloopless LPM that is not the direct sum
of trivial snakes. Then

TM(2, 0) · TM(0, 2) ≥ 4

3
· TM(1, 1)2

This theorem solves Merino-Welsh conjecture for LPMs and
characterizes the cases of equality.
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Sketch of the proof

I Base: Proof for connected snakes.

I Decomposition: Each connected LPM is either a snake, or it
has an element e for which both M \ e and M/e are LPM.

I Step-up: Lemma that concludes the inequality for M from the
inequality for M \ e and M/e.

I Wrap-up: We deal with non-connected LPM.
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Base: Connected snakes

I The result without the 4
3 factor has a proof using a result of

Noble and Royle for series-parallel graphs.

I We proceed by induction on the number of changes of
direction of the snake. We solve 1 and 2 as inductive base.

4 · 3 · (2a − 1) ≥ 12 ·
(

1 + a +
a(a− 1)

2
− 1

)
= 6a2 + 6a =

4

3
· (4a2 + 4a) +

2

3
· (a2 + a)

≥ 4

3
· (2a + 1)2.

I We establish the inductive step using a recursive formula for
the number of valid paths.
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Decomposition lemma

Proposition

Let M be a connected LPM. Then

I M is a snake or

I M has an element e for which both M \ e and M/e are
connected LPMs different from the trivial snake.
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Step-up lemma

Lemma
Let M be a loopless and coloopless matroid and e an element of
the ground set. If the desired inequality holds for M \ e and M/e,
then it also holds for M.

a = TM\e(2, 0), b = TM\e(0, 2), c = TM\e(1, 1)

d = TM/e(2, 0), e = TM/e(0, 2), f = TM/e(1, 1)

(a + d)(b + e) ≥
(√

ab +
√
de
)2
≥ 4

3
· (c + f )2.
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d = TM/e(2, 0), e = TM/e(0, 2), f = TM/e(1, 1)

(a + d)(b + e) ≥
(√

ab +
√
de
)2
≥ 4

3
· (c + f )2.



Wrap up and non-connected LPMs

I We proceed again by induction, this time on the number of
elements in the ground set.

I We use the decomposition lemma to go down.

I We use the inductive hypothesis and the step-up lemma to go
up.

I To deal with non-connected LPM, we apply what we know to
each connected component and we use that the Tutte
polynomial is multiplicative on direct sums of matroids.

TM(2, 0) · TM(0, 2) =
n∏

i=1

ai ·
n∏

i=1

bi =
n∏

i=1

(ai · bi )

≥ 4

3
·

n∏
i=1

c2
i =

4

3
·

(∏
i=1

ci

)2

=
4

3
· TM(1, 1)2.
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Corollary: Merino-Welsh conjecture for LPMs

Theorem
Let M be a loopless and coloopless LPM. Then

TM(2, 0) · TM(0, 2) ≥ TM(1, 1)2.

The equality holds if and only if M is a direct sum of trivial snakes.
Otherwise, the right-hand side can be sharpened by a
multiplicative factor of 4

3 .
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