

Taller de Geometría Discreta y Computacional Encuentro Nacional de Computación 2021

El teorema del Ham Sandwich

Cuauhtemoc Gomez Navarro^{1*} y Isabel Alicia Hubard Escalera²

1,2 Instituto de Matemáticas, UNAM

PLÁTICA

Resumen

El teorema del Ham Sandwich nos dice que, para ciertas medidas finitas, existe un hiperplano que las parte a la mitad simultáneamente. Una generalización es que, para ciertas medidas finitas y para todo entero positivo n, existe una teselación en n conjuntos convexos que miden lo mismo en cada una de las medidas. En esta platica veremos las ideas geométricas y topológicas que se han utilizado para resolver problemas tipo Ham Sandwich, en particular, probaremos los dos resultados anteriores.

Palabras clave: Ham Sandwich, teselaciones convexas, diagramas de potencia, Borsuk-Ulam.

1 Introducción

El teorema del Ham Sandwich en \mathbb{R}^d fue demostrado en 1942 por Stone y Tukey [9].

Teorema 1 (El teorema del Ham Sandwich). Sean $\mu_1, ..., \mu_d$ medidas finitas de Borel en \mathbb{R}^d , tal que todo hiperplano tiene medida cero para cada μ_i . Entonces, existe un hiperplano h tal que para toda $i \in \{1, 2, ..., d\}$ se tiene que $\mu_i(h^+) = \frac{1}{2}\mu_i(\mathbb{R}^d) = \mu_i(h^-)$.

El siguiente teorema es una generalización del teorema del Ham Sandwich; fue demostrado de manera independiente por Soberón [8], Karasev, Hubard, Aronov [6] y Blagojevic, Ziegler [3].

Teorema 2. Sean n y d enteros positivos. Sean $\mu_1, ..., \mu_d$ medidas amigables en \mathbb{R}^d tal que $\mu_i(\mathbb{R}^d) = n$ para toda i. Entonces, existe una teselación convexa de \mathbb{R}^d en n conjuntos $C_1, C_2, ..., C_n$ tal que $\mu_i(C_i) = 1$ para toda i, j.

Observemos que cuando n es una potencia de 2 se puede demostrar el teorema 2 usando el teorema del Ham Sandwich de manera inductiva, sin embargo, demostrarlo para todos los enteros positivos n fue un problema que tardó más de 10 años en resolverse. Ito, Uehara, Yokoyama [5] (en 1998) y Bespamyatnikh, Kirkpatrick, Snoeyink [2] (en 2000) probaron de manera independiente el caso discreto en \mathbb{R}^2 , y Sakai [7] (en 2002) lo probó para medidas en \mathbb{R}^2 . En 2010 Hubard y Aronov [4] usaron diagramas de potencia (que son una generalización de los diagramas de Voronoi) para reducir un problema de repartición equitativa (al que llamaron el teorema del pollo picante) a un problema topológico. Después, en 2012 Soberón [8] usa las ideas de Hubard y Aronov [4] y el teorema de Dold para demostrar un lema sobre particiones balanceadas y el teorema 2. Por otro lado, en 2014 Karasev, Hubard y Aronov [6] demuestran el teorema del pollo picante para números de la forma p^k (con p primo) y como corolario obtienen el teorema 2. También, en 2014 Blagojevic y Ziegler [3] usaron la solución geométrica de Karasev, Hubard y Aronov [6] y teoría de obstrucción para demostrar el teorema del pollo picante para números de la forma p^k , con lo cual se tiene otra demostración del teorema 2.

2 Definiciones

Definición 1. Diremos que una acción de un grupo G sobre un conjunto X es *libre*, si no hay $g \in G \setminus \{e\}$ que tenga puntos fijos; es decir, para cada $g \neq e$ y $x \in X$, $g(x) \neq x$. Si (X, Φ) , (Y, Ψ) son G espacios, una función continua $f: X \to Y$ es G equivariante si $f \varphi_g = \psi_g f$ para toda $g \in G$.

Definición 2. Sea $S = \{x_1, x_2, ..., x_n\}$ un conjunto de n puntos en \mathbb{R}^d y $w = (w_1, w_2, ..., w_n)$ un vector de pesos en \mathbb{R}^n . Para cada $i \in \{1, ..., n\}$, definimos las funciones potencias $h_i : \mathbb{R}^d \to \mathbb{R}$ como $h_i(x) = d(x, x_i)^2 - w_i$. El diagrama de potencia C(S, w) es una teselación de \mathbb{R}^d en n conjuntos $C_1, ..., C_n$, tal que, $x \in C_i \Leftrightarrow h_i(x) \le h_i(x)$ para toda j.

Definición 3. Una medida μ en \mathbb{R}^d es *amigable*, si es finita, absolutamente continua con respecto a la medida de Lebesgue, y existe un conjunto convexo y compacto K tal que $\mu(K) = \mu(\mathbb{R}^d)$.

3 Problemas

Problema 1. Dadas d medidas finitas en \mathbb{R}^d , ¿cuándo podemos asegurar que existe una teselación de \mathbb{R}^d en n conjuntos convexos tal que los convexos miden lo mismo en cada una de las d medidas?

4 Resultados

Teorema 3 (El teorema del Ham Sandwich). Sean $\mu_1, ..., \mu_d$ medidas finitas de Borel en \mathbb{R}^d , tal que todo hiperplano tiene medida cero para cada μ_i . Entonces, existe un hiperplano h tal que para toda $i \in \{1, 2, ..., d\}$ se tiene que $\mu_i(h^+) = \frac{1}{2}\mu_i(\mathbb{R}^d) = \mu_i(h^-)$.

Teorema 4 ([1]). Sea $S = \{x_1, ..., x_n\}$ un conjunto de n puntos en \mathbb{R}^d y sea K un conjunto convexo y compacto. Sea μ una medida de probabilidad en \mathbb{R}^d la cual es cero afuera de K y absolutamente continua con respecto a la medida de Lebesgue. Para cada función de capacidad $c: S \to [0, 1]$ con $\sum_{x_i \in S} c(x_i) = 1$, existe un vector de pesos $w = (w_1, ..., w_n) \in \mathbb{R}^n$, tal que el diagrama de potencia C(S, w) cumple que $\mu(C_i) = c(x_i)$, para cada $i \in \{1, ..., n\}$.

Lema 1. [[8]] Sean p y d enteros positivos con p un número primo. Sean $\mu_1, ..., \mu_d$ medidas amigables en \mathbb{R}^d tal que $\mu_i(\mathbb{R}^d) = p$, para toda $i \in \{1, 2, ..., d\}$. Entonces, existe un entero $2 \le r \le p$ y una teselación de \mathbb{R}^d en r conjuntos convexos $C_1, C_2, ..., C_r$, tal que $\mu_1(C_j) = \mu_2(C_j) = ... = \mu_d(C_j)$, para toda $j \in \{1, 2, ..., r\}$, y estas medidas son todas enteras positivas.

Teorema 5 ([8]). Sean n y d enteros positivos. Sean $\mu_1, ..., \mu_d$ medidas amigables en \mathbb{R}^d tal que $\mu_i(\mathbb{R}^d) = n$ para toda i. Entonces, existe una teselación convexa de \mathbb{R}^d en n conjuntos $C_1, C_2, ..., C_n$ tal que $\mu_i(C_j) = 1$ para toda i, j.

Referencias

- [1] B. Aronov, F. Aurenhammer, and F. Hoffmann. Minkowski-type theorems and least-squares clustering. *Algoritmica* 20, pages 61–76, 1998.
- [2] S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink. Generalizing ham sandwich cuts to equitable subdivisions. *Discrete Comput. Geom.*, pages 605–622, 2000.
- [3] P.V.M Blagojevic and G.M. Ziegler. Convex equipartitions via equivariant obstruction theory. Israel Journal of Mathematics, pages 49–77, 2014.
- [4] A. Hubard and B. Aronov. Convex equpartition of volume and surface area. arXiv:1010.4611v1 [math.MG], 2010.
- [5] H. Ito, H. Uehara, and M. Yokoyama. 2-dimension ham sandwich theorem for partitioning into three convex pieces. *In Discrete and Computational Geometry: Japanese Conference*, 1998.
- [6] R. Karasev, A. Hubard, and B. Aronov. Convex equipartitions: The spicy chicken theorem. *Geometriae Dedicata*, pages 263–279, 2014.
- [7] T. Sakai. Balanced convex partitions of measures in \mathbb{R}^2 . *Graphs and Combinatorics*, pages 169–192, 2002.
- [8] P. Soberon. Balanced convex partitions of measures in \mathbb{R}^d . Mathematika, pages 71–76, 2012.
- [9] A.H. Stone and J.W. Tukey. Generalized sandwich theorems. Duke Math, 1942.