Perfect rainbow polygons for colored point sets in the plane

David Flores-Peñaloza^{*1}, Mikio Kano^{†2}, Leonardo Martínez-Sandoval^{‡3}, David Orden^{§4}, Javier Tejel^{¶5}, Csaba D. Tóth^{||6}, Jorge Urrutia^{**7}, and Birgit Vogtenhuber^{††8}

¹Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico. ² Ibaraki University, Hitachi, Ibaraki, Japan.

³ Sorbonne Université, Institut de Mathématiques de Jussieu - Paris Rive Gauche (UMR 7586), Paris, France.

⁴Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares, Spain.

⁵Departamento de Métodos Estadísticos, IUMA, Universidad de Zaragoza, Zaragoza, Spain.

⁶Department of Mathematics, California State University Northridge, Los Angeles, CA, USA.

⁷Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico.

⁸Institute of Software Technology, Graz University of Technology, Graz, Austria.

Abstract

Given a planar *n*-colored point set $S = S_1 \dot{\cup} \dots \dot{\cup} S_n$ in general position, a simple polygon P is called a *perfect* rainbow polygon if it contains exactly one point of each color. The rainbow index r_n is the minimum integer m such that every *n*-colored point set S has a perfect rainbow polygon with at most m vertices. We determine the values of r_n for $n \leq 7$, and prove that in general $\frac{20n-28}{19} \leq r_n \leq \frac{10n}{7} + 11$.

1 Introduction

The study of colored point sets has attracted a lot of interest, and particular attention has been given to 2-, 3-, and 4-colored point sets, see [1], [2], and [4]. Let $S = S_1 \dot{\cup} \dots \dot{\cup} S_n$ be an *n*-colored point set in the

[¶]Email: jtejel@unizar.es. Research supported by MINECO project MTM2015-63791-R and Gobierno de Aragón under Grant E41-17R (FEDER).

^{||}Email: csaba.toth@csun.edu. Research supported by NSF awards CCF-1422311, CCF-1423615, and DMS-1800734.

**Email: urrutia@matem.unam.mx. Research supported by UNAM project PAPIIT-IN102117

^{††}Email: bvogt@ist.tugraz.at. Research supported by the Austrian Science Fund within the collaborative DACH project *Arrangements and Drawings* as FWF project I 3340-N35.

This project has been supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922. plane, where for every $1 \leq i \leq n$, S_i is the set of elements of S colored with color c_i . We assume that each S_i is non-empty and that S is in general position. All polygons considered here are simple polygons. An m-gon is a polygon with m vertices, and m-gons for m = 3, 4, 5, 6, 7 are called triangles, quadrilaterals, pentagons, hexagons, and heptagons, respectively.

Given an *n*-colored point set S, a polygon P is called a *perfect rainbow* polygon if it contains exactly one point of each color. We are interested in finding the smallest number r_n such that any *n*-colored point set has a perfect rainbow polygon with at most r_n vertices.

It is well know that for every 3-colored point set S, there exists an empty triangle such that its vertices are in S and have different colors, that is, $r_3 = 3$. In this work, we determine the exact values of r_n up to n = 7, which is indeed the first case where $r_n > n$. Moreover, for general n, we show lower and upper bounds on r_n . Due to space constraints, most proofs are only sketched or completely deferred to the full paper.

Theorem 1 The rainbow indexes for $n \le 7$ are: $r_3 = 3, r_4 = 4, r_5 = 5, r_6 = 6, \text{ and } r_7 = 8.$

Proof. We sketch the proofs for r_6 and r_7 . Figure 1 illustrates the lower bounds. For the upper bound of r_6 , we prove that parallel lines ℓ_3 and ℓ_4 as in Figure 2 do exist and we work out the cases there. For r_7 , we proceed analogously, constructing the perfect rainbow 8-gon by adding two edges to the hexagon in order to capture a point of the seventh color.

 $^{^{*}{\}rm Email:}$ dflorespenaloza@ciencias.unam.mx. Research supported by the grant UNAM PAPIIT IN117317

 $^{^{\}dagger}\rm{Email:}$ mikio.kano.math@vc.ibaraki.ac.jp. Research supported by JSPS KAKENHI Grant Number 16K05248

 $^{^{\}ddagger}\rm{Email:}$ leomtz@im.unam.mx. Research supported by the grant ANR-17-CE40-0018 of the French National Research Agency ANR (project CAPPS).

[§]Email: david.orden@uah.es. Research supported by project MTM2017-83750-P of the Spanish Ministry of Science (AEI/FEDER, UE).

Figure 1: Lower bound constructions for r_6 and r_7 .

Figure 2: Cases for the upper bound of r_6 .

3 Upper bound for rainbow indexes

We show in this section that for any *n*-colored point set, there exists a perfect rainbow polygon of size at most $\frac{10n}{7} + 11$. To that end, we first give a lemma showing that seven points (without colors) inside a vertical strip can be always covered by a tree with four vertices and a segment such that their union is inside the strip and is non-crossing (see Figure 3b).

Lemma 2 Let $\{p_1, \ldots, p_7\}$ be the seven points of a point set S, ordered from left to right. Let B be the strip defined by the two vertical lines passing through p_1 and p_7 , respectively. Then, there exist two non-crossing trees T_1 and T_2 , the first one of order 4 and the second one of order 2, such that:

- (i) The union of T₁ and T₂ covers the points of S, is inside B and is non-crossing.
- (ii) For every T_i , i = 1, 2, there exists a special leaf v_i such that the extension of the edge in T_i incident to v_i goes to the left. Moreover, if the extension at v_i hits T_j , then the extension at v_j does not hit T_i , that is, the two trees and the two extensions do not create cycles.

Theorem 3 For any *n*-colored point set *S*, there is a perfect rainbow polygon of size at most $\frac{10n}{7} + 11$.

Figure 3 illustrates the method to obtain such a perfect rainbow polygon. Assume that n = 7k. We choose n points such that each point has a different color. We divide the n points from left to right into k groups of seven points each and apply Lemma 2 to each group to cover the seven points by two trees. Then we join all trees to a long vertical segment P' placed to the left, by extending the edge adjacent to the special leaf of each tree. Finally, we build a perfect rainbow polygon by surrounding the edges of the obtained tree.

Figure 3: (a) Dividing the n points into groups of size 7. (b) Applying Lemma 2 to each group. (c) Joining all trees to the segment P'. (d) Building the perfect rainbow polygon.

4 Lower bound for rainbow indexes

For every $k \geq 3$, Dumitrescu et al. [3] constructed a set S of n = 2k points in the plane such that every noncrossing covering path has at least (5n - 4)/9edges. They also showed that every noncrossing covering tree for S has at least (9n - 4)/17 edges. Furthermore, every set of $n \geq 5$ points in general position in the plane admits a noncrossing covering tree with at most $\lfloor n/2 \rfloor$ noncrossing segments, where a segment is defined as a chain of collinear edges, and this bound is the best possible.

In this section, we use the point sets constructed in [3] to derive a lower bound for the complexity of a covering tree under a new measure that we define here. This bound, in turn, yields a lower bound on the complexity of simple polygons that contain the given points and have arbitrarily small area.

Covering Trees versus Polygons. Let T be a noncrossing geometric tree (i.e., plane straight-line tree). Similarly to [3], we define a **segment** of T as a path of collinear edges in T. Two segments of T may cross at a vertex of degree 4 or higher; we are interested in noncrossing segments. Any vertex of degree two and incident to two collinear edges can be suppressed; consequently, we may assume that T has no such vertices.

Let \mathcal{M} be a partition of the edges of T into the

minimum number of pairwise noncrossing segments. Let s = s(T) denote the number of segments in \mathcal{M} . A **fork** of T (with respect to \mathcal{M}) is a vertex v that lies in the interior of a segment $ab \in \mathcal{M}$, and is an endpoint of another segment in \mathcal{M} ; the *multiplicity* of the fork v is 2 if it is the endpoint of two segments that lie on opposite sides of the supporting line of ab, otherwise its multiplicity is 1. Let t = t(T) denote the sum of multiplicities of all forks in T with respect to \mathcal{M} .

We express the number of vertices in a polygon that encloses a noncrossing geometric tree T in terms of the parameters s and t. If all edges of T are collinear, then s = 1 and T can be enclosed in a triangle. The following lemma addresses the case that $s \ge 2$.

Lemma 4 Let T be a noncrossing geometric tree and \mathcal{M} a partition of the edges into the minimum number of pairwise noncrossing segments. If $s \geq 2$ then for every $\varepsilon > 0$, there is a simple polygon P with 2s + t vertices such that $\operatorname{area}(P) \leq \varepsilon$ and T lies in P.

Proof. Let $\delta > 0$ be the sufficiently small constant (specified below). For every vertex v of T, let D_v be a disk of radius δ centered at v. We may assume that $\delta > 0$ is so small that the disks D_v , $v \in V(T)$, are pairwise disjoint, and each D_v intersects only the edges of T incident to v. Then the edges of T incident to v partition D_v into deg(v) sectors. If deg $(v) \geq 3$, at most one of the sectors subtends a flat angle (i.e., an angle equal to π). If deg $(v) \leq 2$, none of the sectors subtends a flat angle by assumption. Conversely, if one of the sectors subtends a flat angle, then the two incident edges are collinear; they are part of the same segment (by the minimality of \mathcal{M}), and hence v is a fork of multiplicity 1.

In every sector that does not subtend a flat angle, choose a point in D_v on the angle bisector. By connecting these points in counterclockwise order along T, we obtain a simple polygon P that contains T. Note that P lies in the δ -neighborhood of T, so area(P) is less then the area of the δ -neighborhood of T. The δ -neighborhood of a line segment of length ℓ has area $2\ell\delta + \pi\delta^2$. The δ -neighborhood of T is the union of the δ -neighborhoods of its segments. Consequently, the area of the δ -neighborhood of T is bounded above by $2L\delta + s\pi\delta^2$, which is less than ε if $\delta > 0$ is sufficiently small.

It remains to show that P has 2s + t vertices, that is, the total number of sectors whose angle is not flat is precisely 2s + t. We define a matching between the vertices of P and the set of segment endpoints and forks (with multiplicity) in each disk D_v independently for every vertex v of T. If v is not a fork, then D_v contains deg(v) vertices of P and deg(v) segment endpoints. If v is a fork of multiplicity 1, then D_v contains deg(v) - 1 vertices of P and deg(v) - 2 segment endpoints. Finally, if v is a fork of multiplicity 2, then D_v contains deg(v) vertices of P and deg(v) - 2 segment endpoints. In all cases, there is a one-to-one correspondence between the vertices in P lying in D_v and the segment endpoints and forks (with multiplicity) in D_v . Consequently, the number of vertices in P equals the sum of the multiplicities of all forks plus the number of segment endpoints, which is 2s + t, as required.

Next, we relate point sets to covering trees.

Lemma 5 Let S be a finite set of points in the plane, not all on a line. Then there exists an $\varepsilon > 0$ such that if S is contained in a simple polygon P with m vertices and area $(P) \leq \varepsilon$, then S admits a noncrossing covering tree T and a partition of the edges into pairwise noncrossing segments such that $2s + t \leq m$.

Proof. Let $m \geq 3$ be an integer such that for every $k \in \mathbb{N}$, there exists a simple polygon P_k with precisely m vertices such that $S \subset int(P_k)$ and $area(P_k) \leq \frac{1}{k}$. The real projective plane $P\mathbb{R}^2$ is a compactification of \mathbb{R}^2 . By compactness, the sequence $(P_k)_{k\geq 3}$ contains a convergent subsequence of polygons in \mathbb{PR}^2 . The limit is a weakly simple polygon P with precisely m vertices (some of which may coincide) such that $S \subset P$ and $\operatorname{area}(P_k) = 0$. The edges of P form a set of pairwise noncrossing line segments (albeit with possible overlaps) whose union is a connected set that contains S. In particular, the union of the m edges of P form a noncrossing covering tree T for S. The transitive closure of the overlap relation between the edges of P is an equivalence relation; the union of each equivalence class is a line segment. These segments are pairwise noncrossing (since the edges of P are pairwise noncrossing), and yield a covering of T with a set \mathcal{M} of pairwise nonoverlapping and noncrossing segments. Analogously to the proof of Lemma 4, at each vertex v of T, there is a one-to-one correspondence between the vertices in P located at v and the segment endpoints and forks (with multiplicity) located at v. This implies 2s + t = m with respect to \mathcal{M} .

Construction. We use the point set constructed by Dumitrescu et al. [3]. We review some of its properties here. For every $k \in \mathbb{N}$, they construct a set of n = 2k points, $S = \{a_i, b_i : i = 1, \ldots, k\}$. The pairs $\{a_i, b_i\}$ $(i = 1, \ldots, k\}$) are called *twins*. The points a_i $(i = 1, \ldots, k)$ lie on the parabola $\alpha = \{(x, y) : y = x^2\}$, sorted by increasing x-coordinate. The points b_i $(i = 1, \ldots, k)$ lie on a convex curve β above α , such that dist $(a_i, b_i) < \varepsilon$ for a sufficiently small ε , the lines $a_i b_i$ are almost vertical with monotonically increasing positive slopes (hence the supporting lines of any two twins intersect below α). For $i = 1, \ldots, k$, they also define pairwise disjoint disks $D_i(\varepsilon)$ of radius ε centered at a_i such that $b_i \in D_i(\varepsilon)$. Furthermore, (1) no three points in S are collinear; (2) no two lines determined by the points in S are parallel; and (3) no three lines determined by disjoint pairs of points in S are concurrent. Finally, the x-coordinates of a_i (i = 1, ..., k) are chosen such that (4) for any four points c_1, c_2, c_3, c_4 from S, labeled by increasing xcorrdinate, the supporting lines of c_1c_4 and c_2c_3 cross to the left of these points.

Analysis. Let S be a set of n = 2k points defined in [3] as described above, for some k > 1. Let \mathcal{M} be a set of pairwise noncrossing line segments in the plane whose union is connected and contains S.

In particular, if T is a noncrossing covering tree for S, then any partition the edges of T into pairwise noncrossing segments could be taken to be \mathcal{M} .

A segment in \mathcal{M} is called *perfect* if it contains two points in S; otherwise it is *imperfect*. By perturbing the endpoints of the segments in \mathcal{M} , if necessary, we may assume that every point in S lies in the relative interior of a segment in \mathcal{M} . By the construction of S, no three perfect segments are concurrent; so we can define the set Γ of maximal chains of perfect segments; we call these *perfect chains*. We rephrase two lemmas from [3] using this terminology.

Lemma 6 [3, Lemma 7] Let pq be a perfect segment in \mathcal{M} that contains one point from each of the twins $\{a_i, b_i\}$ and $\{a_j, b_j\}$, where i < j. Assume that p is the left endpoint of pq. Let s be the segment in \mathcal{M} containing the other point of the twin $\{a_i, b_i\}$. Then one of the following four cases occurs.

Case 1: *p* is the endpoint of a perfect chain;

Case 2: s is imperfect;

Case 3: s is perfect, one of its endpoints v lies in $D_i(\varepsilon)$, and v is the endpoint of a perfect chain;

Case 4: s is perfect and p is the common left endpoint of segments pq and s.

Lemma 7 [3, Lemma 9] Let pq be a perfect segment in \mathcal{M} that contains a twin $\{a_i, b_i\}$, and let q be the upper (i.e., right) endpoint of pq. Then q is the endpoint of a perfect chain.

Denote by s_0 , s_1 and s_2 , respectively, the number of segments in \mathcal{M} that contain 0, 1, and 2 points from S. A careful adaptation of a charging scheme from [3, Lemma 4] yields the following result, where t is the number of forks (with multiplicity) in \mathcal{M} .

Lemma 8 $s_2 \le 8s_0 + 9s_1 + 4(t+1)$.

The combination of Lemma 8 and $n = s_1 + 2s_2$ yields the following lemma.

Lemma 9 Let S be a set of $n = 2k \ge 4$ points from [3]. Then every covering tree T of S satisfies $2s + t \ge (20n - 8)/19$.

We are now ready to prove the main result of this section.

Theorem 10 For every odd integer $m \ge 5$, there exists a finite set of *m*-colored points in the plane such that every perfect rainbow polygon has at least (20m - 28)/19 vertices.

Proof. Let n = m - 1. We construct the point set $S = S_1 \dot{\cup} S_2$ in general position as follows. Let S_1 be the set of $n = 2k \ge 4$ points from [3], where each point has a unique color. We can prove that there is an $\varepsilon > 0$ such that if there is a simple polygon of area at most ε with (20m - 8)/19 vertices that contains S_1 , then S_1 admits a noncrossing spanning tree and a partition of its edges into segments such that $2s + t \le (20m - 8)/19$.

Let S_2 be the union of two disjoint $\varepsilon/(2n)$ -nets for the range space of triangles, that is, every triangle of area $\varepsilon/(2n)$ or more contains at least two points in S_2 . All points in S_2 have color m. Now suppose, for the sake of contradiction, that there exists a perfect rainbow polygon P with x vertices where x <(20m-28)/19. Triangulate P arbitrarily into x-2triangles. The area of the largest triangle is at least $\operatorname{area}(P)/(x-2)$. Since this triangle contains at most one point from S_2 , we have $\operatorname{area}(P)/(x-2) \leq \varepsilon/(2n)$, and so area $(P) \leq \varepsilon$. By the choice of ε , S_1 admits a noncrossing spanning tree and a partition of its edges into segments such that 2s + t < (20m - 8)/19. This can be proved to be a contradiction, which completes the proof.

References

- S. Bereg, F. Hurtado, M.Kano, M. Kormand, D. Lara, C. Seara, R. Silveira, J. Urrutia, and K. Verbeek, Balanced partitions of 3-colored geometric sets in the plane *Discrete Applied Math.*, 181 (2015) 21–32
- [2] S. Bereg, M. Kano, Balanced line for a 3-colored point set in the plane, *Electron. J. Combin.*, 19 (2012) 33.
- [3] A. Dumitrescu, D. Gerbner, B. Keszegh, C. D. Tóth, Covering paths for planar point sets, *Discrete & Computational Geometry*, **51:2** (2014) 462–484.
- [4] M. Kano and J. Kynčl, The hamburger theorem, Computational Geometry: Theory and Applications, 68 (2018) 167–173.