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Geometric Systems of Unbiased Representatives

Aritra Banik∗ Bhaswar B. Bhattacharya† Sujoy Bhore‡ Leonardo Mart́ınez-Sandoval§

Abstract

Let P be a set of points in Rd, B a bicoloring of P and O
a family of geometric objects (that is, intervals, boxes,
balls, etc). An object from O is called balanced with
respect to B if it contains the same number of points
from each color of B. For a collection B of bicolorings of
P , a geometric system of unbiased representatives (G-
SUR) is a subset O′ ⊆ O such that for any bicoloring
B of B there is an object in O′ that is balanced with
respect to B.

We study the problem of finding G-SURs. We obtain
general bounds on the size of G-SURs consisting of in-
tervals, size-restricted intervals, axis-parallel boxes and
Euclidean balls. We show that the G-SUR problem is
NP-hard even in the simple case of points on a line and
interval ranges. Furthermore, we study a related prob-
lem on determining the size of the largest and smallest
balanced intervals for points on the real line with a ran-
dom distribution and coloring.

Our results are a natural extension to a geometric con-
text of the work initiated by Balachandran et al. on
arbitrary systems of unbiased representatives.

1 Introduction

Let P be a set of size n. A bicoloring B of P is a color
assignment (red or blue) of the points in P , that is,
B : P → {Red, Blue}, where B contains at least one
red and at least one blue point. For a bicoloring B, a
subset of points P ′ ⊆ P is called balanced with respect
to B if P ′ contains the same number of red and blue
points, with respect to B. Given a set P and a set
of bicolorings B, a system of unbiased representatives
(SUR) consists of a collection S of subsets of P such
that for every bicoloring B ∈ B, there is at least one
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subset in S that is balanced with respect to B.

Balachandran et al. [2] studied various problems related
to finding SURs, with the motivation that SURs are
useful for product testing over a large population. For
example, suppose the effectiveness of a drug on patients
is studied with respect to a large set of binary attributes
related to physical characteristics, such as body weight,
height, age. It is desirable to choose few families of
test subjects that help to represent these attributes in
a balanced manner.

Now, consider an instance where in addition we are
given specific geographic locations for our test subjects
and we are asked to pick them close to each other to save
costs in sampling. In this situation, we cannot choose
arbitrary families of test subjects: we would be required
to impose some geometric constrains on them.

A natural way to model this restriction is to represent
the population by a point set P in Euclidean space
of some dimension and to sample using ranges from
some fixed family of geometric objects, that is, intervals,
boxes, balls, etc. This leads to the following definitions.

For a bicoloring B of P , we say that a geometric range
is balanced with respect to B if the subset of points of
P that it contains is balanced with respect to B. Given
a set P , a set of bicolorings B and a family of allowed
geometric ranges O, a geometric system of unbiased rep-
resentatives (G-SUR) consists of a subfamily O′ ⊆ O
such that for every bicoloring B ∈ B, there is at least
one object in O′ that is balanced with respect to B.

Problem 1 (G-SUR) Given a set P ⊂ Rd of n points,
a set of bicolorings B of P , and a collection of allowed
geometric ranges O, find a G-SUR of minimal size.

For a specific attribute, it is desirable to understand
how big a balanced range (for this attribute) can be.
Assuming attributes are uniformly distributed over the
population, leads to the following problem:

Problem 2 (Balanced Random Covering) Given a
set P of n points and a random bicoloring B of P (cho-
sen uniformly at random from a collection of bicolorings
B of P ), what can be said about the behavior of the size
of the largest/smallest balanced interval as n goes to in-
finity?

In addition to the practical motivation, Problem 1 and

38



30th Canadian Conference on Computational Geometry, 2019

Problem 2 are related to the vast literature on color-
ings of geometric objects in which a balanced property
is desired. This includes classical results as the ham-
sandwich theorem and its algoritmic version by Lo et
al. [6]. Other relevant results on balanced coloring of
point sets include the balanced island problem studied
by Aichholzer et al. [1], balanced partitions problem for
3-colored planar sets by Bereg et al. [4], and balanced
4-holes in bichromatic point set [3].

1.1 Our Results

As an introduction to the subtleties of the geometric
context, we study the G-SUR problem for n points on
a line and interval ranges in Section 2. We show, given
a set of n points on a line and a collection of interval
ranges, there is G-SUR of size n − 1. Moreover, this
bound is tight, that is, there are a set of bicolorings for
which n− 1 intervals are required to obtain a balanced
interval (Theorem 3). Motivated by statistical signifi-
cance, we then focus on G-SURs where the set of ranges
are intervals of size 2k. Here, we show that for any set of
bicolorings B, where each bicoloring in B contains more
than

⌊
n
2k + 1

⌋
(k−1) red and

⌊
n
2k + 1

⌋
(k−1) blue points

such a G-SUR exists (Theorem 4). Next, for m < n/2,
we give bounds on the size of G-SURs for when each
bicoloring of B has at least m red and m blue points.
More precisely, we show that n − m intervals are al-
ways sufficient and sometimes necessary (Theorem 6).
All these results extend to higher dimensions to point
sets in Rd and G-SURs consisting of axis-parallel boxes.
Section 3 provides the hardness results. We show that
the problem of finding a minimal size G-SUR is NP-
hard even in the simple case of points on the real line
and interval ranges (Theorem 7). To do this we provide
a reduction from the Set Cover problem.

In Section 4, we study the problem for points in Rd and
G-SURs consisting of Euclidean balls. Once more, we
show n − 1 balls are sometimes necessary and always
sufficient to give a G-SUR (Theorem 10).

Finally, in Section 5, we study the Balanced Random
Covering problem, where we compute the asymptotic
size of the largest/smallest balanced interval for uni-
formly random bicolorings of points on a line in a dis-
crete model (Theorem 11) and a continuous one (The-
orem 12).

2 Points on a Line and Interval G-SURs

Let P = {p1. . . . , pn} be a set of points on the real line
R. Throughout this section we assume that {p1. . . . , pn}
is sorted from left to right on the real line. Here our goal
is to find a minimum size G-SUR consisting of interval
ranges for a given family of bicolorings B of P .

2.1 Lower and Upper Bounds

In this section we show that n − 1 intervals are always
sufficient and sometimes necessary.

Theorem 3 Let P = {p1, . . . , pn} be a set of n points
on a line. Then, the following hold:

(a) There exists a set of n− 1 bicolorings B, for which
any G-SUR consisting of intervals has size at least
n− 1 and

(b) There exists a set I of n− 1 intervals such that for
any bicoloring B of P there is at least one balanced
interval in I with respect to B.

Figure 1: An illustration of the case where n−1 intervals
are necessary.

Proof. We prove the first part of the theorem by con-
structing an example where n − 1 intervals are nec-
essary. Without loss of generality, we can assume
P = {1, 2, . . . , n}. We consider the set of bicolorings
B = {B1, . . . , Bn−1} where the bicoloring Bi colors the
first i-points red and the remaining (n − i) points blue
(see Figure 1).

A balanced interval with respect to Bi may be shortened
until its endpoints are integers. Thus, we may choose
a minimal G-SUR that consists only of intervals with
integral endpoints. In such a system, an interval that is
balanced for Bi must be symmetric around 2i+1

2 . Dif-
ferent bicolorings need intervals symmetric around dif-
ferent points, so a G-SUR for B requires at least n − 1
intervals.

For the second part of the theorem consider

I = {[p1, p2], [p2, p3], . . . , [pn−1, pn]}.

Let B be any bicoloring of P . We claim that there
exists an interval in I which is balanced with respect to
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B. Indeed, if this is not the case then all the intervals
in I are monochromatic, so

B(p1) = B(p2) = . . . = B(pn),

which is a contradics the fact that B contains at least
one red and one blue point. This concludes the proof of
(b). �

Theorem 3 is already evidence of the contrast between
the geometric and the abstract setting. While Balachan-
dran et al. proved that n − 1 arbitrary sets are some-
times necessary, their example consists of all 2n−2 pos-
sible bicolorings. The theorem above shows that only
taking (n−1) bicolorings are enough for the necessity, in
the geometric context. Theorem 3 says that this is still
the case even if we further restrict the allowed ranges to
be intervals.

An analogous proof shows that the n−1 bound carries to
point sets in Rd and G-SURs consisting of axis-parallel
boxes.

2.2 G-SURs Consisting of Intervals of Size 2k

In this section we fix a positive integer k and consider
the case where the G-SUR consists of intervals of length
exactly 2k. Certainly, with this restriction it is not pos-
sible to have a G-SUR for every possible set of bicolor-
ings. For example, consider any bicoloring B that con-
tains exactly one red point. No interval of size greater
than 2 is balanced with respect to B. In the following
lemma we show that if each color is large enough, then
there exists a G-SUR consisting of intervals of length
2k.

Theorem 4 Given n ≥ 2k, a set P = {p1, . . . , pn} of
points on the real line and a set of bicolorings B, where
each bicoloring in B contains more than

⌊
n
2k + 1

⌋
(k−1)

red and
⌊

n
2k + 1

⌋
(k−1) blue points, there exist a G-SUR

for B consisting of intervals of size 2k.

Proof. Let B be a bicoloring of P containing more than⌊
n
2k + 1

⌋
(k − 1) red and

⌊
n
2k + 1

⌋
(k − 1) blue points.

Consider now the set of consecutive disjoint intervals of
size 2k. More formally,

I = {Ij |Ij = [pj , pj+2k−1] where 1 ≤ j ≤ n− 2k + 1}.

Let rj (resp. bj) be the number of red (resp. blue)
points in the interval Ij . We say that an interval in I
is red (resp. blue) if rj > bj (resp. bj > rj).

We claim that I is a G-SUR. For the sake of contradic-
tion, we suppose that every interval from I is either red
or blue. We may assume I1 is red.

Claim 5 Every interval Ij ∈ I is red.

Proof. We prove this by induction on j. By assump-
tion, I1 is red. Now, suppose that Ij is red, that is,
rj > bj , so rj ≥ k + 1. As we shift from Ij to Ij+1 we
lose or gain at most one red point, so rj+1 ≥ rj−1 ≥ k.
It is then impossible for Ij+1 to be blue. Since each
interval is either red or blue, Ij+1 must be red. �

Consider now the set of disjoint intervals

I ′ = {Ij |j ≡ 1 mod 2k, 1 ≤ j ≤ n− 2k + 1}.

The intervals from I ′ and the interval In−2k+1 cover the
entire set P . Since every interval from I is red, it has
at most k − 1 blue points. Therefore, the coloring has
at most ⌊ n

2k
+ 1
⌋

(k − 1)

blue points. This yields a contradiction to the number
of blue points of B given by the hypothesis, so I must
have a balanced interval with respect to B. �

The result in Theorem 4 is tight, in the sense that if we
have fewer points of either color we cannot guarantee the
existence of a G-SUR of size 2k. This can be witnessed
by an example on n = 3k−1 points on the real line and
the coloring B whose first k − 1 and last k − 1 points
are blue, and the middle k + 1 ones are red.

An analogous proof shows that Theorem 4 extends to
point sets in Rd and G-SURs consisting of axis-parallel
boxes of size 2k.

2.3 G-SURs for m-restricted Bicolorings

For m ≤ n/2, a bicoloring B of P is m-restricted if it
contains at least m points of each color. In this section
we study the size of G-SURs for m-restricted colorings.

If n is even and m = n/2, then there is a G-SUR of size
1: the one consisting of the interval [p1, pn]. Otherwise,
we have the following result.

Theorem 6 Let P = {p1, . . . , pn} be a set of n points
on the real line and m < n/2 a positive integer. Then,

(a) There exists a set of n−m bicolorings B, for which
any G-SUR consisting of intervals has size at least
n−m.

(b) There exists a set I of n−m intervals such that for
any bicoloring B of P there is at least one balanced
interval in I with respect to B.

Proof. To prove the second part of the theorem con-
sider the set of points

P ′ = {p1, . . . , pn−m+1},
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and let I be the G-SUR given in Theorem 3 for P ′,
which is of size n −m. Let B be any m-restricted bi-
coloring of P . Note that P \ P ′ is of size m − 1, so by
definition it is impossible that all the red or blue points
are completely contained in P \ P ′. Then P ′ contains
both blue and red points, so the restriction B′ of B to
P ′ is also a valid coloring for P ′. We may then take a
balanced interval I ∈ I with respect to B′. This inter-
val is also balanced with respect to B, so I is a G-SUR
for all the m-restricted bicolorings of P .

Now we prove that n−m intervals are sometimes nec-
essary. We may assume P = {1, 2, . . . , n}. We consider
the set of m-restricted bicolorings B = {B1, . . . , Bn−m}
defined as follows. For i = 1, 2, . . . , n− 2m + 1, the bi-
coloring Bi has the leftmost m+ i−1 points colored red
and the rest blue. For i = n − 2m + 2, . . . , n −m, the
bicoloring Bi has the points in the interval

{i− n + 2m, . . . , i + m− 1}

colored red and the remaining m points colored blue.
See Figure 2 for an example.

Figure 2: An example of the construction in which n−m
intervals are needed in Theorem 6 for n = 9 and m = 3.
Vertical dashed segments indicate where the symmetries
must hold.

As in the proof of Theorem 3, we may assume that a G-
SUR consists of intervals with integral endpoints. For
i = 1, 2, . . . , n−2m+1, an interval balanced with respect
to Bi must be symmetric around 2m+2i−1

2 .

For i ≥ n−2m+2, an interval balanced with respect to
Bi cannot have blue points from both the left and right
sides, as otherwise it would have n − m > n/2 > m
red points, but at most m blue points. So it has to
be symmetric either around the 2i−2n+4m−1

2 or around
2i+2m−1

2 .

Regardless of these final choices, we obtain intervals
symmetric around n−m different points, so they must
all be different. This finishes the proof.

�

3 Hardness Results

In this section we study the computational aspect of
finding minimal size G-SURs for points on the real line
using interval ranges. We receive as input a set of n
points P = {p1, . . . , pn} and a family of bicolorings B =
{B1, . . . , Bm} of P . We expect as output the size of
the minimal G-SUR consisting of interval ranges. We
denote this problem as Minimal Interval G-SUR.

Theorem 7 The Minimal Interval G-SUR prob-
lem is NP-hard.

B1

B2

B3

B4

B5

p1 p′1 p2 p′2 p3 p′3

S1 S2 S3 S4

p4 p
′
4

Figure 3: An illustration of the construction used in
Theorem 7. In each bicolring Bi, the blue points be-
tween two consecutive pairs {pi, p′i} and {pi+1, p

′
i+1} are

dummy points.

Proof. We give a reduction from the Set Cover prob-
lem. In the Set Cover problem, we are given a set of
elements X = {x1, . . . , xn} (called the universe), and a
collection S = {S1, . . . , Sm} of m subsets, where each
Si ⊆ X, and

⋃
1≤i≤m Si = X. The goal is to identify

the smallest sub-collection of S whose union equals the
universe.

From an instance (X,S) of the Set Cover prob-
lem we create an instance (B, P ) of the Minimal
Interval G-SUR problem in the following manner.
For every set Si, we create a pair of consecutive
points {pi, p′i}. The points are in the following or-
der {{p1, p′1}, {p2, p′2}, . . . , {pm, p′m}} on the line. Be-
sides for any two consecutive pair of points {pi, p′i}
and {pi+1, p

′
i+1}, we introduce two dummy points be-

tween them. For every xj ∈ X we construct a bi-
coloring Bj as follows: the points pi and p′i are col-
ored red and blue, respectively, if xj ∈ Si. Other-
wise, the points pi and p′i are colored blue. Further-
more, we color all the dummy points blue in any bicol-
oring. This completes the construction. We illustrate
an instance (B, P ) that is reduced from the set system
S1 = {x1, x2, x3}, S2 = {x1, x2, x4}, S3 = {x3, x4, x5},
S4 = {x1, x3, x4} (see Figure 3).

In the forward direction, we show that if there is a so-
lution of the Set Cover problem of size k then there
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is a solution of Minimal Interval G-SUR problem
of size k. Assume that the Set Cover problem has a
solution S∗ where |S∗| ≤ k. We construct a set I∗ of in-
tervals cardinality k as follows. I∗ = {(pi, p′i)|Si ∈ S∗}.
The claim is I∗ is a solution of Minimal Interval
G-SUR problem. Otherwise, there exists a bicoloring
Bi ∈ B such that there is no balanced interval in I∗
with respect to Bi. However we know there exists a set
Sj ∈ S∗ that contains xi. Thus the interval (pj , p

′
j) is

already taken in I∗, and by construction it is balanced
with respect to Bi. Hence the claim holds.

Conversely, suppose I∗ is a solution of the Minimal
Interval G-SUR of cardinality at most k. Observe
that, due to the construction of (B, P ), any interval that
is not either of the form (pi, p

′
i) or (d, pi) (where d is a

dummy point) is not balanced with respect to any Bi.
Hence we may assume that any interval in I∗ has one
of these two forms. Next, we construct the following set
S∗ = {Sj |(pj , p′j) ∈ I∗ or (d, pj) ∈ I∗}. Observe that
|S∗| ≤ k. We claim S∗ is a set cover for the set system
(X,S). If not, there exists an element xi ∈ X that is not
covered. Consider the corresponding bicoloring Bi. We
know there is a balanced interval I ∈ I∗ with respect to
Bi. By construction, I can be either (pj , p

′
j) or (d, pj).

Hence we know Sj ∈ S∗, and xi ∈ Sj . This contradicts
our assumption and the claim holds. �

4 Points in Rd and Ball G-SURs

Let P = {p1. . . . , pn} be a set of points in Rd. Given
a family of bicolorings B, here the goal is to find a G-
SUR O∗ consisting of Euclidean balls. We show general
bounds for the size of O∗.
To give a lower bound, we embed the one-dimensional
example from Lemma 3 in a line ` of Rd and note that a
ball is balanced if and only if the interval resulting from
intersecting the ball with ` is balanced. Any ball creates
at most one such interval on `, so a G-SUR must have
size at least n− 1.

We now show that n − 1 balls always suffice. For this
we consider the Gabriel graph G(P ) whose vertex set is
P and there is an edge (x, y) when the closed ball with
diameter on the line segment xy contains no other point
of P .

Lemma 8 The Gabriel graph is connected.

This result is well-known on the plane (see e.g. [5]). For
completeness, here we provide a proof which works in
higher dimensions.

Proof. It is enough to show that for any partition P =
Q ∪R of the vertices of G(P ) there is an edge between
a vertex of Q and a vertex of R. Let (q, r) be a pair of

closest points q ∈ Q and r ∈ R, that is, that minimize
d(q, r).

If the ball with diameter qr contains another point r′

from, say, R, then d(q, r′) < d(q, r), a contradiction.
Similarly, this ball cannot contain another point from Q.
So qr is an edge of G(P ), and the proof is complete. �

Lemma 9 For any set P of n points in Rd and any
family B of bicolorings of P , there exists a G-SUR con-
sisting of n− 1 Euclidean balls.

Proof. Consider the set of n− 1 edges E of a spanning
tree T of the Gabriel graph G(P ). For every edge e =
(p, q) ∈ E, let Oe be the ball with diameter pq. Let
O = {Oe|e ∈ E}. We claim that O is a G-SUR.

For any bicoloring B of P there is at least a red point r
and a blue point b. Since T is connected, there is a path
on T that connects r to b, and thus there is an edge in
this path with endpoints of opposite colors with respect
to B. The ball corresponding to this particular edge is
balanced, as it only contains r and b. �

Thereby we conclude the following theorem.

Theorem 10 Let d ≥ 1 and n ≥ 2 be positive integers.
Then the following hold:

(a) There exists a set P of n points in Rd and a family
of n− 1 bicolorings B for P , for which any G-SUR
consisting of Euclidean balls has size at least n− 1.

(b) For any set of n points P in Rd there exists a set O
of n−1 Euclidean balls such that for any bicoloring
B of P there is at least one balanced ball in O with
respect to B.

5 Balanced Covering on Random Points on a Line

In this section we study the properties of balanced inter-
vals for random bicolorings of points on a line. Consider
a set P = {p1, p2, . . . , pn+m} on a line, pick a subset of
P of size m uniformly at random, color these points red.
Color the remaining n points blue. Define the random
variables:

– Tm,n = the size of the smallest balanced interval.

– Sm,n = the size of the largest balanced interval,

We are interested on the asymptotic behaviour of Tm,n

and Sm,n as m and n become large. Due to space con-
straints, here we focus only in the case in which m is
much smaller compared to n. In this situation we have
the following result.
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Theorem 11 For m = o(
√
n),

Sm,n = Tm,n = 2,

with high probability.1

Proof. The equality Tm,n = 2 is direct because there
are always two consecutive points of different color.

Next, we consider Sm,n. Without loss of generality, we
may assume that n > 3(m+2). Let E be the event that
are at least three blue points between each pair of red
points, before the first red point and after the last red
point. Note that the event Sm,n ≥ 4 is impossible if E
happens.

We can calculate the probability of E happening using
the following argument. Consider blocks of colors of
type bbbrbbb, rbbb and b. Each situation in which E
happens corresponds to placing a bbbrbbb block, then
m− 1 blocks rbbb to its right, and then distributing the
remaining b’s in between these blocks. Therefore, the
number of situations in which the event happens is

(
m + n− 3(m− 1)− 6

m

)
=

(
n− 2m− 3

m

)

The probability space has size
(
m+n
m

)
. Therefore, by

Bernoulli’s inequality,

P(E) =

(
n−2m−3

m

)
(
m+n
m

) =
(n− 2m− 3)!n!

(n− 3m− 3)!(m + n)!

=
m−1∏

j=0

(
1− 3m + 3

m + n− j

)

≥
(

1− 3m + 3

n + 1

)m

≥ 1−m

(
3m + 3

n + 1

)
.

Since m = o(
√
n), the right hand side converges to 1

as n goes to infinity. This means that with high prob-
ability the event E happens, and therefore, with high
probability Sm,n = 2. �

In the discrete model presented above the points are
equally spaced. In practical applications this is not al-
ways the case. Thus we can also study an analogous
problem in the following continuous model which takes
into consideration the distance between random sam-
ples.

We independently and uniformly sample m points from
the interval [0, 1] and color them red, and, similarly,

1Here we use the usual convention that Xn = x with high
probability if limn→∞ P(Xn = x) = 1.

sample n independent and uniform points and color
them blue. By symmetry, any of the red/blue discrete
orderings are equally probable, and thus they distribute
as in the discrete model above. Therefore, as before,
Sm,n = Tm,n = 2, with high probability. Furthermore,
in this case, we can also consider the length of the bal-
anced intervals. More precisely,

– Mm,n = the length of the shortest balanced inter-
val,

– Lm,n = the length of the longest balanced interval.

Once more, suppose that m = o(
√
n). Since Sm,n =

2 with high probability, the largest balanced interval
must have as endpoints two consecutive points with high
probability. Moreover, as n increases, the maximum
spacing between consecutive blue points converges to 0
almost surely. These two remarks give a sketch of the
proof for the following theorem.

Theorem 12 For m = o(
√
n), Mm,n and Lm,n con-

verge to 0 almost surely.
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